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Diffraction Intensit ies  from a Cluster of Curved Crystall ites.  I. 

General Theory for One- and Two-Dimens iona l  Cases 

BY G. B. MITRA 

Department of Physics, Indian Institute of Technology, Kharagpur, India 

(Received 2 March 1963 and in revised form 12 May 1964) 

An elementary theory of diffraction by an axially parallel aggregate of curved crystallites has been 
developed and a general expression for two-dimensional curved crystals has been derived. This 
expression straightway leads to a corresponding expression for the one-dimensional case. For the 
extreme cases of zero curvature and of equiangularly spaced atoms arranged on the circumference 
of a circle, the general expressions, as expected, lead respectively to Bragg's law and to the expression 
derived by Blackman for a circular lattice. On the basis of the expressions derived, numerical com- 
putation of the intensity diffracted at different angles by atoms arranged equiangularly on a circle 
and on a semicircle, the angular spacing for the two cases being the same, has been carried out from 
a very small angle of scattering to an angle larger than the angle corresponding to the first peak 
which would be obtained if Bragg's law were applicable to the lattices. It  is observed that  while for 
the case of the full circle there are a large number of prominent maxima and minima, for the semi- 
circle the most prominent maximum, apart from the one in the zero angle region, is in the neigh- 
bourhood of the Bragg angle. In between these two maxima, there are several maxima which are 
much suppressed. Positions of the peaks and troughs in the two cases are approximately the same. 

Introduction 

The possibil i ty of curved lattices occurring in nature  
was first discussed by  Paul ing (1930). Later  X-ray  
~nd electron microscope studies (Bates, Sand & Mink, 
1950; Noll & Kircher,  1951, 1952; Whit taker ,  1953; 
Taggart ,  Milligan & Studer, 1954) have confirmed 
tha t  certain silicate minerals  actual ly  have bent  
lattices. Nye (1949), Cottrell (1949) and Paterson 
(1954) have also concluded tha t  bent  glide lamellae 
might  be present in deformed metals.  Tomlin & 
Ericsson (1960) have suggested tha t  certain types of 
protein fibres might  be formed of curved crystallites. 
Thus, a s tudy  of diffraction intensit ies from curved 
crystalli tes appears to be of wide interest. 

Theoretical  invest igat ion of this problem has been 
carried out by  Fock & Kolp insky  (1940), B lackman  
(1951a, b), Oster & Ri ley  (1952), Whi t t aker  (1954). 
Jagodzinski  & Kunze  (1954), Waser  (1955), Kunze  
(1956), S tuar t  (1959), Fraser,  MacRae & Freeman  
(1959), Burge (1959) and Cowley (1961). All of them 
have studied different special cases of the problem 
and  the expressions obtained by  them do not  lead 
to easy numerical  computation.  In  view of this, there 
is scope for fresh work in this field and the present 
a t t empt  has been directed towards obtaining an 
expression for the in tens i ty  of a beam of parallel  
rays  diffracted by  an axial ly  parallel aggregate of thin,  
small,  identical  crystalli tes bent  along the surface of 
a cylinder. 

Derivation of an express ion  for 
diffraction intensity 

Let  ABCD (Fig. 1) represent a layer of identical  
atoms in the X :Y plane of one of the curved crystallites. 

The repeti t ion of ABCD at  regular distances c along 
the z direction will form the crystallite. In  the plane 
of ABCD, the  position of an  atom P is described 
by  the polar coordinates (@mr, yJr) where @,~r----R+mb, 
~r----r?), R is the radius of the first arc AB, b the  
radial  distance between two successive concentric 
arcs, ~ the angle subtended at  the common centre 
of the arcs by  two neighbouring atoms on the  same 
arc, and m and r are integers including zero. The 
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Fig. 1. Diffraction of a parallel beam of X-rays 

by a curved crystallite. 
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amplitude of a beam of parallel rays diffracted by 
this crystallite in the direction S =  S a - S ,  (where S, 
and Sa denote directions of the incident and diffracted 
rays respectively) will be proportional to 

sin (~/2)TC. S 
A(S)=f(S) sin (z/2)C.S 

X{12fr "y-'exp(-(2zr'/2)i(pmr-p°)s} m } (1) 

where f(S) is the atomic scattering factor in the 
direction S, T is the number of layers in the z direction 
and 2 the wavelength of the diffracted beam. The 
evaluation of A thus depends on the evaluation of 
the quantity G given by 

G ( S ) = 2  2 exp {-(27~/2)i(pmr-po).S } . (2) 
r m 

Let us, for the time being, forget about the z 
direction and consider a random aggregate of two- 
dimensional crystallites each identical with ABCD 
and lying in the same plane as ABCD. Let the incident 
and diffracted rays make angles ao and a with the 
Y axis as shown in Fig. 1. Let each layer be com- 
posed of M concentric arcs, each arc containing 
Ar atoms. Then equation (2) can be written 

N - 1  M - 1  

G(S)= 22 22 exp(-(2~/2)i[(R+mb){cos(r~o+a) 
r = 0  m = 0  

--cos (r(p+ a0)}--R (cos o¢--cos a0)]) (3) 

N - 1  M - 1  

= 22 2 exp ((27~/2)i[2R sin ½rq) {sin (½r9+ a) 
r=O m = 0  

- s i n  (½rg+ ao)}-mb (cos ( rg+  a) 

- c o s  ( r ~ +  a0)}] ) .  (4) 

When R becomes very large, ~ -+ 0 and sin½rq -> ½r% 
lmr---> lor=ar (Fig. 1) where a is the repeat distance 
between two neighbouring atoms on the first arc 
(m=0), so that  R=a/q~ and equation (4) can be 
written 

N--1  M - 1  

G(S)= 2 • exp ((27~/2)i[{ar (sin a - s i n  a0)} 
r = 0  m = 0  

-{bm (cos a - c o s  a0)}]) (4a) 

which represents the amplitude of X-rays scattered 
by a two-dimensional rectangular Bravais lattice of 
repetition distances a and b respectively. This is as 
is expected. 

Equation (3) can be written 

G(S) =exp {(4~/2)iR sin 0 sin (0+ao)} 
N - 1  M - 1  

x 2 22 exp {(4xc/2)i(R+mb) sin 0 sin (rq~+0+a0)}, 
r=0 ~=o (5) 

where 
a - -  a0  = 2 0 .  (6 )  

Utilizing the well known relation (Sneddon, 1956) 

(3O 

exp (ix sin 0)= 22 Jp(x) exp ipO 
p-------oo 

where Jr(x) is the pth order Bessel function of the 
first kind with argument x, we may write equation (5) 
in the form 

G(S) =exp {(4~/2)iR sin 0 sin (0+ao)} 
N--1  M - 1  

x 22 22 2 '  Jv((47~/2) sin O{R +mb}) 
r = 0  m = 0  p = - c o  

× exp {ip(r 9 + 0 + o~o)} 
= exp ((47d/2)R sin 0 sin (0 + a0)} 

M - 1  oo 

× 22 22 Jp((4~/2) sinO{R+mb}) 
m = O  p = - o o  

× (sin Np½~/sin p½~0) exp {ip(O + a0 + N - 1 ~ 9)} • 

(7) 

The measured intensity of the beam diffracted in 
a direction making an angle 20 with the incident 
beam will be proportional to the average value of GG* 
(where G* is the complex conjugate of G) the aver- 
aging process being carried over all values of a0 
from 0 to 2~ and the given value of 0. The measured 
intensity in the direction 20 for such a cluster of 
two-dimensional curved crystallites will then be pro- 
portional to 

I(~)  =<laG*l> 
M - 1  M - 1  

= A re ~ 22 Jo(#{R + mb})Jo(#{R + nb}) 
m = O  n=O 

+2 2: 22 J~(~{R+m@J,(~{R+n@ 
p = l  L m = 0  n = 0  

x sin e Arp~-q~/sin 2 p½q~, (8) 

where 

Writing 
/~ = (4~/2) sin 0 . 

Q = 2nlJgq~ I 
h = 2as in0 /2  J k = 2bsin0/2 

we find easily that  equation (8) can be written 

M--1  M - 1  

I(hk)=N 2 2 2 go(QN{h+mkq~})Jo(QN{h+nkq~}) 
m = O  n=O 

(9) 

+ 2 22 .~ Jp(QN{h + mkcf})Jv(QAr(h + nk~0}) 
p = l  Lm=O n = 0  

x sin e Np½q~/sin 2 p½~v. (10) 

T h e  c a s e  o f  a s i n g l e  arc 

Let us consider the average intensity I(h) from a 
cluster of identical single arcs each lying in the same 
plane as the others and each oriented at random with 
respect to the axis. Equation (10) for such a case can 
be written 
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Fig. 2. Relative intensity at different angles of deviation of X-rays diffracted by an axially parallel aggregate of linear crystallites 
each consisting of (a) 20 atoms arranged equiangularly on the circumference of a circle, (b) 10 atoms arranged equiangularly 
on half the circumference of the same circle, so that angular and linear spacings between two consecutive atoms in the two 
cases are same. 

oo 
I (h ) = N2J2o( QNh ) + 2 .~  J~( QNh ) (sin 2/V½p~/sin 2 p½~). 

p=l (11) 
For  Q = I ,  

oo 
I (h ) = N2 g~( Nh ) + 2 .~  J~(Nh ) (sin 2 px~/sin 2 p ( z/iV) . 

p=l (12) 

The product  within the  summat ion  sign of equat ion 
(12) will have  appreciable values only for p = n N ,  
n being an  integer. Hence, equat ion (12) can be 
wri t ten 

¢o 
I ( h ) = l ~ J ~ ( N h ) + 2 N  ~ ~, J ~ ( N h )  . (13) 

n = l  

This is the  same as equat ion (4) of B lackman  (1951b), 
which is valid for N atoms ar ranged equiangular ly 
on the  circumference of a circle. Since this case is 
identical wi th  the  case with Q = I ,  we find t h a t  
equat ion (11) automat ica l ly  leads to equat ion (4) of 
B lackman  (1951b). 

Fig. 2 shows the  plots of I(h) against  h for two 
cases viz. (a) Q = I ,  /V=20  and (b) Q = 2 ,  /Y=10.  
Thus 9 for these two cases is the  same and hence 
for the  same radius of curvature ,  a, and therefore 
h will be same for both  cases. Computat ions  were 
carried out  wi th  Bessel functions of order up to 30, 
when even for the  max imum argument  the  functions 
became negligibly small. I t  is observed t h a t  while 
for the  case of the  full circle (Q = 1), there are a large 
number  of max ima  and  minima,  for the  case of the  

semicircle (Q=2) ,  there is a main  m a x i m u m  at  about  
h = l . 1 ,  preceded by  a large number  of suppressed 
peaks. Positions of the  peaks and  t roughs in the  
two cases are, however,  observed to agree approx-  
imately.  I t  will be interesting to follow how the 
intensi ty  distr ibution changes with increasing Q and  
how it is modified for two- and  three-dimensional  
cases. These points will be discussed in several forth- 
coming publications. 

The au thor  is highly indebted to Prof. A. J .  C. 
Wilson for a t t rac t ing  his a t ten t ion  to the  problem 
and to the  referees for pointing out  some errors in 
the original manuscr ipt .  
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Kristall- und Molekiilstruktur des syn-Methyldiazotatkaliums CH3N2OK 

VON R. HUB~R, R. I,AWOER UNI) W. HOI'I'E 

Abteilung fi~r RSntgenstrukturforschung am Max-Planclc-Institut fi~r Eiweiss- und Lederforschung, Mi~nchen und 
Physilcalisch-Chemisches Institut der Technischen Hochschule, Miinchen, 

Abteilung fi~r Strulcturforschung, Deutschland 

( Eingegangen am 25. M drz 1964 und wiedereingereicht am 30. April 1964) 

The crystal structure of potassium syn-methyldiazotate has been determined by two-dimensional 
heavy-atom methods and refined by three-dimensional Fourier- and least-squares computations. 
The final R index is 8.4% for 1230 reflexions. The space group is C2/c with unit-cell dimensions 
a=12.49,  b=9.97, c=6.61, fl=81.5 °. There is one molecule per asymmetric unit.  The methyl  
hydrogen atoms have been located. 

The molecule is found in the cis-diazotate form and is planar within the limits of the analysis. 
The N-O bond length 1.306 A is unusually short. 

Einleitunp, 
In  einer frfiheren Arbei t  (Mfiller, Hoppe, Hagenmaier ,  
tIaiss,  Huber,  Runde l  & Suhr, 1963) haben  wir kurz 
fiber Ergebnisse einer zweidimensionalen RSntgen- 
kr is ta l l s t rukturanalyse  berichtet,  welche die Bestim- 
mung der Molekfilstruktur des syn-Methyldiazotat- 
kal iums zum Ziele hatte.  

In  der vorliegenden Arbei t  werden die RSntgen- 
untersuchungen,  die zuerst mi t  zweidimensionalen, 
sp£ter auch mi t  dreidimensionalen Methoden durch- 
gefiihrt  wurden, im einzelnen beschrieben. 

Experimentelles 
Das syn-Methyldiazota tkal ium kristall isiert  aus flfis- 
sigem Ammoniak  in dfinnen Nadeln,  aus Dimethyl-  
sulfoxyd in Pr ismen yon ca. ½ m m  Kantcnl~nge.  Die 
Kris ta l le  waren uns yon E. Mfiller zur Verfiigung 
gestellt  worden, woffir wir auch an  dieser Stelle 
unseren besten Dank  aussprechen. 

Die ausserordentl ich luft- und  feuchtigkei tsempfind- 
lichen Kris tal le  wurden unter  t rockenem Stickstoff in 
Markkapi l laren eingeschmolzen. Nach Pr~zessions- 
au fnahmen  ergaben sich die Gi t terkonstanten zu 

a--  12,49 _+ 0,02, b = 9,97 + 0,02, c = 6,61 _+ 0,02/~ 

f l=81  ° 30 '_+5' .  

Entsprechend der hohen Genauigkeit  der Parameter-  
bes t immung  wurden die Gi t terkonstanten mi t  beson- 
derer Sorgfalt gemessen (Aufbelichtung eines NaC1- 
Einkr is ta l ld iagrammes auf den gleichen Pr~zessions- 
film). Die Dichte ergab sich nach der Schwebemethode 
(Mischungen von getrocknetem Benzol und  Methylen- 
jodid unter  Stickstoff) zu ~ = 1,60 g.cm -3 (theoretische 
Dichte bei 8 Formeleinhei ten  ~ =  1,61 g.cm-3). 

Auf Grund der AuslSschungen (hkl) fiir h +/c = 2n + l ,  
(hOl) fiir l = 2 n + l ,  kommen  die R a u m g r u p p e n  Cc 
(azentrisch, vierz~h]ige Punktlage)  und  C2/c (zentro- 
symmetr isch,  achtz~hlige Punktlage)  in Frage. I m  
Laufe der Analyse stellte sich die zentrosymmetr ische 
Raumgruppe  als die richtige heraus. 

Punkt lagen :  (0, 0, 0; ½, ½, 0 ) +  x, y, z; x, y, z 

~, y, ½ - z ;  x, ~, ½ + z .  

Ffir  die In tens i t~ t saufnahmcn wurden Kris t~l lchen 
mi t  den Kanten l~ngen  0,5, 0,2, 0,2 m m  verwendet,  
deren Absorpt ion bei Verwendung yon MoK~¢- 
Strahlung (# = 11,0 cm -1) vernachl~ssigbar gering war. 
Die Intensi t~ten wurden photographisch vermessen 
(Pr~zessionsaufnahmen und Weissenberg-Mehrfach- 
f i lm-Aufnahmen mi t  Zwischenlage yon 15 # s tarken 
Kupferfolien,  Photometr ierung mi t  einem an unserem 
Ins t i tu t  entwickelten integrierenden Photometer) .  
Da der Kris ta l l  einen hohen Tempera tur faktor  be- 


